eGFI - Dream Up the Future Sign-up for The Newsletter  For Teachers Online Store Contact us Search
Read the Magazine
What's New?
Explore eGFI
Engineer your Path About eGFI
Overview Lesson Plans Class Activities Outreach Programs Web Resources Special Features K-12 Education News
  • Tag Cloud

  • What’s New?

  • Pages


  • RSS Comments

  • Archives

  • Meta

Feature: Food Safety Engineering

deadly ingredients

(From the October, 2011 issue of ASEE’s Prism magazine. Article by Beryl Lieff Benderly)

You won’t see celebrity chefs whipping up lunch in Ohio State University’s High Pressure Food Processing Lab. Yet Jamie Oliver and other healthy-eating evangelists would feel right at home in this state-of-the-art test kitchen, with its commercial-grade equipment, specialized fryers, and high-tech prep area. They’d also savor the facility’s mission: engineering recipes for ridding food of bacteria that sicken more than 1 in 6 Americans each year, 3,000 of them fatally.

Ohio State’s research lab, run by the Departments of Food Science and Technology and of Food, Agricultural, and Biological Engineering, is part of an emerging, multidisciplinary field aimed at curbing food contamination — and engineers have a prominent seat at the table. Call it the Food Safety Network, or as lab director V. M. Balasubramaniam, associate professor of food science and biological engineering, prefers, “food safety engineering.”

Years before terrorism concerns and highly publicized outbreaks involving tainted spinach, eggs, and peanut butter spurred Congress to pass the Food Safety Modernization Act in December, 2010, engineering educators across the country were working with microbiologists, chemists, food scientists, and other faculty on innovative technologies to protect and follow foods. Their method: apply engineering principles to address microbiological and chemical food-safety challenges and develop unconventional solutions to imminent problems.

Cooking Up Protection

Humans have sought trustworthy methods of preparing and preserving food since hunter-gatherer days. The most common, time-honored means of keeping food safe is what food engineers call “thermal processing”—a.k.a. cooking. Other methods of disinfecting and preserving food, such as drying, smoking, pickling, and flavoring with microbe-killing spices or salt, also have ancient pedigrees. The 19th and 20th centuries brought two more-advanced thermal methods: canning and freezing. The former, invented to feed an army during the first years of the Napoleonic wars, produces some of “the safest food you can have,” says biology Prof. Robert Brackett, director of the Institute for Food Safety and Health at the Illinois Institute of Technology (IIT).

These traditional techniques all alter the appearance, taste, and texture of food, however. Most also reduce such nutrients as vitamins. Consumers began demanding “minimally processed foods [that] can retain more nutrients for health and wellness,” along with sensory qualities much closer to the fresh state, notes Balasubramaniam. So industry began investigating different approaches.

Wrapping Up Safety

In addition to microbe-killing innovations, food-safety engineers are investigating new methods for detecting contamination and designing packaging that does more than just keep food fresh. A number of techniques found in molecular biology and electrical engineering have been adapted to produce assays and biosensors that can rapidly identify pathogens. After seven Chicago-area residents died from poison-laced Tylenol in 1982, demand soared for tamper-resistant packaging. Similarly, notes IIT’s Brackett, the new federal food-safety act will compel food producers to evaluate “the risk of the product being tampered with. They’ll have to come up with new processes to guard against that.”

“Active” or “smart” packaging offers detailed tracking and flagging of foods. Various types of materials, for example, can either absorb potentially detrimental materials, such as excess moisture, or release helpful ones like antioxidants or antimicrobials. Packages containing sensors can warn companies and consumers of contamination or recalls. The three-decade-old bar code may soon be superseded by radio frequency identification (RFID) tagging, which is coming into increasing use in the food industry. RFID tags (also called transponders) contain a microchip and tiny antenna, allowing them to “talk” to electronic readers. When attached to packages, they can record and convey information about each food item contained and the route each shipment has followed. The devices work both with processed foods in cans and boxes, and with fresh fruits and vegetables as long as the tags can be securely attached to bags, ties, or boxes. Unlike bar-code scanners, RFID readers do not require “line of sight” contact to receive information.

In Carmen Moraru’s lab at Cornell, food-safety engineers are exploring advanced technologies that use short pulses of intense light to kill microbes. Researchers say this method shows potential as a swift, relatively inexpensive way to clean food-preparation surfaces and equipment. Moraru’s team also is investigating membrane-separation techniques aimed at removing bacteria and spores from raw milk. The result, they hope, will be dairy products with fresher taste and better nutrition because it will take less heat to make them safe.

An Advancing Field

As the need to safeguard food expands, so does the range of expertise demanded of engineering educators in this exciting new specialty. Preparing students for careers in food-safety engineering may require academic adjustments, however. Food science and food engineering typically have resided in schools of agriculture, not engineering. Moreover, most offer subfields in food engineering, food chemistry, or food technology rather than a full menu of courses.

Will food-safety engineering join bioengineering as an interdisciplinary field in its own right? “I know to never say never,” says Cornell’s Moraru, who sees it remaining a specialized subfield of food engineering, with links to biological and agricultural engineering. On the other hand, she notes, increasing public and industry interest in food safety ultimately “may be the common denominator” that creates a signature dish from today’s disparate academic ingredients. Bon appétit!

Submit a Comment

By clicking the "Submit" button you agree to the eGFI Privacy Policy.